醋醋 | 美国为何不建对撞机(上)_风闻
今天敲钟人不来-2020-01-01 17:51
来源 | 醋话集(cuhuaji),已获授权
前情提要:
擅使数学葵花剑的国际超弦教,为解难言之隐,联手高能物理界,前来中国寻枪,被杨振宁等科学家极力阻止:这柄枪极其昂贵,就算造出来了,基本上也没啥(luan)用。
然而一位网管小哥,差点让超弦11维时空梦想成真。
实验没有问题,我们观测到了超光速。
作为深受业界尊敬的严谨科学家,他平静地宣布了第二次实验结果。
两年前,当他第一次观测到中微子速度超过了光速,震惊程度与全世界一样——这不可能是真的,爱因斯坦相对论光速上限摆在那儿呢。
他是意大利大型中微子振荡实验(OPERA)小组领导人安东尼奥·伊拉蒂塔托(Antonio Ereditato)。过去两年中,他托率领180名研究人员,观测到了16000次“超光速”现象。
醋醋的朋友房师说,哪怕是“你懂的”快乐,当你经历16000次之后,也都麻木了。
这个小组又反复检查了六个月,排除了所有可能的实验误差,包括月球潮汐影响,地球自转影响,地震影响,温度和云层对GPS信号传递的影响等等。考虑到所有这些后,实验小组相信这一结果的置信度达到99.9997%。
伊拉蒂塔托决定公开这个石破天惊的消息。
180名研究人员郑重其事签名,在世界上最权威的科学杂志之一《自然》发表他们的论文:
人类步入超光速时代。
果然全世界一片哗然,物理学家们脸上写着大大的两个字“不信”。
伊拉蒂塔托换了一班人马,重复了实验,在精确性、统计分析等多方面得到改进,他拍着胸脯信誓旦旦保证:
“我们对实验结果非常有信心。我们一遍又一遍检查测量中所有可能出错的环节,却什么也没有发现。我们想请同行们独立核查”。
这不是科幻小说。
事情发生在2011年,OPERA小组于当年9月22日公开超光速消息,在11月17日再次确认实验没错,实验过程是这样的:
位于瑞士日内瓦的欧洲核子研究中心(CERN),利用超级质子同步加速器(SPS),生成定向的μ子中微子束,飞向730公里之外的意大利大萨索山。
山的那边有意大利格兰萨索(GSNL)国家实验室。就在地下1400米深处,一套重达1800吨的的电子照相装置严阵以待,OPERA小组用其观测来自CERN的中微子束。
中微子,宇宙中最多的物质粒子,每秒万亿计中微子穿过我们的身体,我们对此毫无察觉,有“幽灵粒子”之称。
OPERA小组只能捕获到极少的幽灵粒子,由于超强的穿透性,绝大多数中微子穿透了地球,奔向茫茫太空。
让他们懵逼的是,这些中微子以光速的1.0000248倍运行,每秒比光子快了7.4公里。
超光速消息宣布3周后,全世界最大的科学论文网站arxiv给出了80多种解释,其中最激动人心的是超弦多维空间。
CERN发出的中微子有可能振荡成了一种惰性中微子,它可以在多维空间中“抄近路”,然后再振荡回普通中微子,这样看起来中微子就跑得比光快了,同时还不违背相对论。
超弦教一片欢呼,多年的猜想有望获得证实,还顺带拯救了相对论。
美国费米实验室威胁要重复实验,不过他们从头开始需要两年时间。
世界没有等到那一刻。2012年2月22日,CERN在另一本权威科学杂志《科学》上公布了调查结果,OPERA小组错了,原因如下:
他们的GPS光缆与一台电脑的集成电路卡连接不良。
千算万算,谁都没算到网管的机房布线帮了中微子的忙。
网管小哥以一己之力,推动人类进入超光速时代整整5个月。
01
美国关停本土最大对撞机
中微子超光速事件是科学史上罕见的乌龙,让负有领导责任的欧洲核子研究中心(CERN)脸上无光。
4个多月后,欧洲大型强子对撞机(LHC)发现了有“上帝粒子”之称的希格斯粒子,为CERN扳回一城。
希格斯粒子与中微子,标准模型61个基本粒子中最特殊的两个。一个“上帝粒子”,一个“幽灵粒子”,代表了当前基础物理学两大研究方向。
有了前车之鉴,CERN在2012年7月4日发布新闻字斟句酌,不敢把话说满了,强调这是疑似上帝粒子的新亚原子粒子。
CERN有说不得的苦衷。就在两天前,又是费米实验室挑事,在2012年7月2日宣布其数据接近证明上帝粒子,CERN不得不冒险跟发新闻。
如果费米实验室的粒子对撞机Tevatron真的发现了上帝粒子,前前后后投入100亿美元的LHC将是有史以来最昂贵的陪练。
CERN提心吊胆,反复测算了8个多月,终于在2013年3月14日确认,新粒子就是上帝粒子。
所幸这段时间,费米实验室没有出什么幺蛾子。
CERN与费米实验室的竞争由来已久,早在2009年2月,费米实验室就放风Tevatron发现上帝粒子的概率,最坏的情况下为50%,最理想的情况下是96%。
英美一家亲,英国媒体趁机煽风点火:CERN在竞争中已经处于劣势,美国Tevatron有可能后来居上。
面对美国的诈胡,欧洲人只能干着急,因为他们的LHC在2008年9月开机运行没多久,就经历了一连串事故,让计划一拖再拖。
2008年9月10日,LHC启动当天,就遭遇黑客入侵,距离探测器的计算机控制系统仅“一步之遥”。
2008年9月17日,一台30吨重的变压器发生故障,工程人员18日更换了变压器,才令对撞机重新启动。
2008年9月19日,由于焊工手艺不精,两块磁铁之间的电连接部件出现故障,导致1公吨液态氮渗入隧道,LHC紧急关闭长达一年之久,吊足了全世界的胃口。
LHC焊接事故泄露液氮
**据说CERN存在一条鄙视链:**搞理论的瞧不起搞实验的,搞实验的瞧不起搞工程的,搞工程的瞧不起搞维护的,搞维护的瞧不起焊工网管,焊工大叔与网管小哥瞧不起全世界。
美国费米实验室瞧不起CERN。
趁你病,要你命。抓住CERN抢修LHC的空档,费米实验室加快了Tevatron的研究,它已经运行了25年以上,逼近退休。
“这是一项激烈的竞争,是谁取得胜利就是谁取得胜利,来不得半点虚假。”2009年2月,费米实验室的德米特里·德尼索夫(Dmitri Denisov)透露,欧洲那边,CERN在争分夺秒解决故障,甚至放弃了圣诞节休假两月的一贯做法。
这种加班精神,让国内996们佩服不已。
德尼索夫是Tevatron巨型探测器D-Zero的负责人,另一个巨型探测器CDF负责人罗布·罗塞(Rob Roser)是他的竞争对手,LHC的出现让两人“化敌为友”。
罗塞说,“我绝不想看到LHC击败我俩中的任何一个——这就像兄弟俩,谁都不能碰我弟弟一根指头,只有我可以。”
然而团结一致的Tevatron终于未能回光返照,它于2011年10月1日停止运行,终年28岁,关闭前没有发现上帝粒子。
当美国能源部决定关闭Tevatron时,一些物理学家依依不舍,恳求再宽限它3年寿命,以对希格斯粒子做最后一搏。
谁说科学家都是冷冰冰的,他们对常年相伴的机器感情笃厚。
CERN科学家理查德·雅各布松(Richard Jacobsson)照管一台粒子探测器长达十年,对它的每一寸构造都了如指掌,甚至了解它的心情和癖性。
当工程人员来拆卸它更换成LHC的时候,雅各布松情难自禁。“泪水在我眼睛里打转,”他说,“当他们切断电缆的时候,我总以为会有血喷出来。”
Tevatron虽死犹生,它留下了大量数据遗产,让费米实验室还能再忙活至少两年。
导致Tevatron寿终正寝的最大原因,并非它老旧无法运行,也不是LHC的竞争压力,而是……省钱,费米实验室一个实验启动需要经费。
这就是上面说的重复意大利OPERA小组的中微子实验,名叫MINOS,看看到底有没有超光速。
虽然CERN主动认错,美国也未止步中微子实验,反而越做越大。MINOS之后是Nova中微子实验,接下来的“深地下中微子实验(DUNE)”,成为美国物理未来几十年的旗舰项目。
2019年12月18日最新消息,日本拟建全球最大中微子探测器,于近日批准了“顶级神冈”中微子探测器建造计划。
中微子,到底是何方神圣?
02
天不变道亦不变
1940年,中国大地烽火连天,日寇铁蹄踏遍华北华东。
中国最优秀的一批知识精英,被转移到西南腹地,延续文明的火种。
除了著名的西南联大,浙江大学师生也在西迁之列,他们跋山涉水,奔赴一方净土。
浙江大学遵义校址
浙江大学物理系教授王淦昌走建德、过吉安、赴宜山、抵遵义,一路颠簸流离,劳累过度,加上营养不良,生活困难,抵达遵义时,他患上了肺结核。但他躺在病榻上,仍以惊人的毅力对中微子问题苦苦思索。
中微子关系能量守恒定律的生死存亡。学过中学物理都知道,这是自然界的基本定律,能量既不能自生也不能自灭。
董仲舒向汉武帝上《举贤良对策》说:
道之大原出于天,天不变,道亦不变。
道就是定律。海可枯,石可烂,定律不可移。
一切实体都在变化,不变的是背后的定律。道之恒常,搅动的是人生无常。
读罢《红楼梦》,你会感叹人生如梦亦如幻。人如是,原子核也如是。
不稳定的原子核,会放射出粒子或能量变成另一种元素,这个过程叫衰变。共有α、β与γ三种衰变,其中β衰变最不老实,总是搞事,第一次就差点把能量守恒挑落马下。
当原子核放出β粒子即高能电子,发生β衰变后,科学家大吃一惊,β射线是连续的,这意味总能量比衰变前要低。
一部分能量凭空消失了,这是不亚于超光速的震撼事件。
天变了?这一次,实验没有错,科学家们争吵了10年,终于在1924年,量子力学之父玻尔打算放弃能量守恒,他提出了一个假说。
能量在单个微观相互作用可以不守恒,而只需在统计意义上守恒。
玻尔这种和稀泥的解释无法服众,又是坏脾气的泡利首先开火,他直言玻尔在玩危险的游戏。
泡利号称“拳打爱因斯坦,脚踢玻尔”,是物理学江湖知名的自负天才,曾提出“泡利不相容”定理扬名立万,而为人也如此,以批评尖刻、不留情面著称。
1931年,泡利“孤注一掷”,提出一个补救办法,β衰变中,还释放出了没有电荷质量很轻的未知粒子,它神不知鬼不觉逃离现场,并盗走了那部分消失的能量。
原子能之父费米对假说给出了数学描述,并将这个未知粒子命名为中微子。
中微子太神秘了,当时任何仪器都检测不出来蛛丝马迹,连泡利自己都信心不足,他甚至以一箱香槟打赌,人类永远都不能发现中微子。
但泡利提出了一个实验上可以检验的预言:如果能量守恒,β射线谱应该有明晰的上限,而不是一个强度逐渐减弱的长尾巴。
当时王淦昌在柏林大学就读,师从犹太裔女物理学家迈特纳(l.meitner),在其指导下,他选取镭E的β谱进行研究,用自制的计数管测量,精准得出其β谱上限。
1932年1月,王淦昌在德国《物理学期刊》第74卷上发表题为《关于镭E的连续β射线谱的上限》的论文,历史上第一个证实了泡利关于β谱有明晰上限的预言,有力地支持了中微子假说。
此后埃利斯(c.d.ellis)、莫特(n.f.mott)与亨德森(w.j.henderson),都做了类似的实验,得出了一致的结果,玻尔假说不攻自破。
爱因斯坦痴迷大统一,玻尔挑战能量守恒律,这两位物理学的泰山北斗,到达巅峰后的封神一战,都败得灰头土脸,与凡夫俗子无异。
03
1942年发自中国西南的论文
然而,这些实验只是捍卫了能量守恒定律的神圣不可侵犯,中微子在哪还找不着北。
中微子是如此难找,在微观层面上引力可以忽略不计,剩下的三大基本力电磁力、强力与弱力,只有弱力才能掀开中微子一点衣角。
β衰变就是由弱相互作用引起的,俗称弱力。
电磁力,让我们看见光。当恋人拥吻,实际是电磁力在传达绵绵情意,让彼此感觉到触碰与心跳。
中微子拒绝电磁力鸿雁传情,她就是永远触不到的梦中情人。
在当时条件十分艰苦的遵义,王淦昌冥思苦想的就是如何捕捉这个神秘的中微子。在思考了一年之后,他有了一个极富创举的想法。
**核范围内不光能量守恒,动量也要守恒。**能量守恒的本质是时间对称,自然规律在几亿年前与今天一样;动量守恒的本质是空间对称,自然规律在几亿光年外与地球上的一样。
普通β衰变让一个原子核母体产生了三个子体,即电子、反冲原子核与中微子,人们观测前两者的动量和能量,来测算中微子的存在数据。
麻烦的是,这就如星球的三体运动一样难解,王淦昌注意到一种特殊的β衰变,就是原子核俘获核外轨道电子,只产生中微子和反冲核两个子体,三体运动变成了二体运动。
三体人:又躺枪,关我毛事
这种运动,往往是原子核俘获最靠近它的K层轨道电子触发,因此也叫做K俘获β衰变。
如此一来,反冲核的能量和动量仅仅依赖于所放射的中微子,测算反冲核的数据,就能倒推出中微子的庐山真面目!
王淦昌不仅给出了中微子的测算思路,还建议用铍-7做实验,它是最轻元素的放射性同位素中的一个,核的质量愈轻,则它所经受的反冲作用也越显著。
而铍-7,正是通过K俘获的方式衰变成了锂-7。
这已经是一个可执行的实验方法,唯一的问题是,当时积贫积弱战火燃烧的中国根本不具备实验条件。
抚平心中的无奈与惆怅,王淦昌写成论文《关于探测中微子的一个建议》,于1941年10月13日寄到美国《物理评论》,并在1942年1月发表,希望美国同行完成他的实验。
美国物理学家阿伦(J.S.Allen)立即按照王淦昌的建议进行实验,并很快取得肯定结果。两个月后,即1942年3月16日,阿伦把他的题为《一个中微子存在的实验证据》的论文寄到《物理评论》,并在该刊1942年6月发表。
阿伦在文中一开始就明确指出,这个实验是王淦昌最近建议的。
“王淦昌-阿伦实验”是世界上第一个比较确切地验证中微子存在的著名实验,可惜实验精度不够,未能测出单能反冲。
后来许多人继续工作,直到1952年,雷蒙德·戴维斯(Raymond Davis)终于做成功。
04
撩开她的面纱
这还不是最理想的结果,王淦昌提出的实验构思,只能间接看到中微子逃逸后的尾迹,人们梦想将中微子拥入怀中,撩开她的面纱,一睹芳容。
难办的是,中微子是典型的冰美人,拒人光年之外,其平均自由程λ≈4.7x10^14公里,这意味着,在穿越一千亿个地球之后,平均一个中微子才可能与一个原子核发生亲密接触。
人们对此几乎绝望,直接窥探中微子的萍踪魅影,简直是不可能完成的任务。
1947年3月,王淦昌在美国《物理评论》上发表论文《建议探测中微子的几种方法》,又提出一个全新的思路:
通过重原子核裂变,产生极快极多的中微子,去打靶探测器产生核反应。
不能让一个中微子穿越一千亿个地球,那就让一千亿个中微子穿越一个地球。
例如一个装满水的探测器的长度为10厘米,当有5x10^18个中微子通过该探测器时,就有一个中微子能够在探测器中产生核反应。
弱水有三千,只取一瓢饮。
王淦昌提出的这个思路,对于中微子实验影响深远,上文提到的美国与意大利的21世纪中微子实验,本质上也是这种探测方式。
但王淦昌还是只能停留在纸上,当时中国正在打内战,哪有条件玩核裂变。
这一次又是美国人捷足先登。1953年,在萨凡纳河核电厂的地下室里,柯温(C.L.Cowan)和莱茵斯(F.Reines)实施了他们的“鬼魅计划”。
他们建造了一个中微子探测器,用水和氯化镉配成溶液,其中置入三个液体闪烁计数器。
萨凡纳河核反应堆每秒能产生一百万亿个反中微子,它们轰击水中的氢原子核即质子靶,产生中子和正电子。中子被镉吸收,正电子与水中的电子湮灭,释放出光子产生γ射线,令闪烁液体发出荧光。
本来不发光的中微子,通过一系列关联反应发光,暴露在人类的肉眼之下显出真身。
实验进行了3年,到了1956年,柯温和莱茵斯每小时可以俘获3个中微子,通过足够多的样本测出中微子的截面值,与理论预期吻合得很好。
又过了将近40年,诺贝尔奖委员会才确认了这次中微子的发现,给莱茵斯颁发了1995年的诺贝尔奖。而此时柯温长眠地下已有21年。
日本超级神冈中微子实验室,布满了光传感器小球
1956年是一个神奇的年份,柯温和莱茵斯发现中微子**,β衰变的宇称不守恒,也在这一年发现。**
这一次老天没有亏待中国人,发现者就是杨振宁与李政道,他们凭此获得了第二年的首个华人诺贝尔奖。
宇称不守恒,也就是左右不对称,本质上是只有左手旋中微子,没有右手旋中微子造成的,中微子打破了宇称的对称性即对称破缺。
消息传出后,泡利第一个不相信,他好不容易把中微子引进来捍卫能量守恒,这小子居然不是卫道士,而是披头士。“上帝不可能是一个左撇子!”泡利坚信,只有左手右手一个慢动作,才能带给你快乐。
然而很快另一位华人科学家吴健雄女士出手,她用无可争议的实验证明了宇称不守恒,泡利只好举双手投降。
值得一提的是,在杨振宁李政道1956年发表论文前几个月,另一位前苏联物理学家皮亚捷茨基-沙皮罗(Piatetski-Shapiro)也写好了差不多同样的论文,寄给当时苏联物理学扛把子朗道,后者眼皮一翻,就扔到了一边。
当然后来朗道肠子都悔青了,他只好安慰沙皮罗,宇称守恒(P)这小子是有点皮,但是电荷守恒,即电荷有正负(C)还是有操守的,用C来调教P,这对CP一定守恒,天长地久不分手。
朗道再一次遭受打击,1964年两位美国核物理学家詹姆斯·克罗宁(James Watson Cronin)与瓦尔-菲奇(Val Logsdon Fitch)发现CP也不守恒即CP破坏,是谁棒打鸳鸯拆散了这对CP?目前公认的重点嫌疑对象仍是中微子。
能量动量守恒这样的全域对称性,保证我们世界根基的稳定,是道亦不变,易之不易;宇称在β衰变中不守恒,这样的局域对称性,催生了世界的变化,是人之无常易之易。
**静若处子,动如脱兔。**世界在对称与对称破缺中平衡发展。
而CP不守恒更加不得了,它是我们世界赖以存在的基石。
05
叫一次王淦昌同志
抚今追昔,如果当年是一个富强的中国,给予王淦昌优良的实验条件,他很可能就拿到了这发现中微子的诺贝尔奖。
或许王淦昌根本就不在乎诺奖的荣耀呢,1959年他发现了世界第一个反西格马负超子,轰动了整个国际物理学界,如果继续研究下去,诺贝尔奖就在前方。
然而短短两年后,正值巅峰时期的王淦昌突然消失,就如中微子一样当了“隐身人”,连家人都找不到他,大漠深处却多了一个叫“王京”的老头。
原来1961年4月,王淦昌受命秘密参加原子弹研制,奔赴大西北核试验基地,负责物理实验方面的工作。时任第二机械工业部部长刘杰问他是否愿意改名,王淦昌的回答只有短短6个字:
我愿以身许国。
在离诺贝尔奖最近的时候,他选择了放弃,用生命中最辉煌的岁月,隐姓埋名搞科研,托举起一个国家的核大国地位。
他没有过怨言,直到一年除夕夜,才终于真情流露,他和他的学生邓稼先在帐篷里喝酒,邓稼先哽咽着说:
叫了王京同志几十年,今天,叫一次王淦昌同志吧。
两人相拥而泣。
由于消失在国际物理界太久,王淦昌早年对发现中微子做出的巨大贡献,也逐渐被人们遗忘,如提到中微子的存在实验时,往往只有戴维斯的工作,却把王淦昌的原始构想忽略了。
有感于此,对王淦昌充满敬意的杨振宁心怀不平,他与中科院高能物理研究所教授李炳安合写了一篇文章《王淦昌先生与中微子》,发表在中国《物理》杂志1986 年15 卷12 期上,澄清了这一历史事实真相,并广泛引起了世人的注意。
1994年,浙江大学科技哲学硕士刘宏葆,与浙江大学哲学社会学系副教授何亚平合写了文章《王淦昌与中微子的早期研究》,发表在《自然辩证法通讯》第16卷第6期上,进一步全面细致地梳理了王淦昌的中微子研究贡献。
我国还有很多科学家遭遇了类似王淦昌的不公,如物理学家赵忠尧,1930年首次观测到正反物质湮没,发现了反物质正电子,却错失1936年诺贝尔奖。现在闹得沸沸扬扬的环形正负电子对撞机(CEPC),其研制的理论基础就来自于他。
半个多世纪后,当人们重新审视当年的诺贝尔评奖过程,发现了赵忠尧的贡献,这其中就有杨振宁、李炳安合写文章廓清事实。李政道也不遗余力在各种场合,澄清这桩历史公案。
回顾这些科技史,并非是贬低国外科学家的工作,而是要还历史本来面目。
长期来看,历史是公平的,历史也不会忘记,尽管王淦昌两次与诺贝奖擦肩而过,但他获得了比诺贝尔奖更大的荣耀——
两弹元勋。
王淦昌先生(1907年-1998年)
06
挖出8艘航空母舰
如果你记住了王淦昌的名字,不要回头,前方中微子有更大的惊喜。
美国南达科他州霍姆斯特克(Homestake )矿山,运营着北美埋藏最深、最富有的金矿,拥有126年的开釆史。
2001年霍姆斯特克矿山关闭,五年后,Barrick Gold矿业公司将该矿产捐赠给了南达科他州作为地下实验室。同年,慈善家桑福德(T.Denny Sanford )给该项目捐赠了7000万美元,因此,实验室在建成后以桑福德来命名。
2017年7月21日,一向平静的实验室迎来喧嚣。
一群科学家、工程师和应邀的社会显要人物聚集于此,他们乘坐一个简陋的升降机,下到约1500米深的矿洞中,见证桑福德地下实验室扩建开工。
这里将安放美国有史以来最大的中微子探测器,进行“深地下中微子实验(DUNE)”,承载未来几十年美国物理界的希望。
在这个地下洞穴中,科学家们铲开第一锹土,随后工人们需要挖掘80万吨岩石,相当于8艘尼米兹级航空母舰的重量,再运进7万吨液氩。
3500辆20吨重型卡车满载液氩,从墨西哥湾沿岸和东海岸出发,将液氩运至霍姆斯特克矿山。为减轻管道压力,工作人员会将液氩转换为气体,通过管道送到地下,并在零下185.8°C的低温下重新冷凝成液体,注入四个接近四层楼高的超纯液氩大罐,其纯度只含万亿分之一的杂质。
据费米实验室工程师,低温基础设施LBNF项目经理戴维·蒙塔纳里(David Montanari)估计,填充满一个液氩大罐需要7个月至一年的时间。研究人员计划2019年开始构建DUNE探测器,并在2024年完成。
DUNE实验只是一个更大型项目LBNF/DUNE的一部分。
LBNF是指长基线中微子设施,位于费米实验室,一旦DUNE实验室建造完毕,费米实验室会在2026年发射世界最强的中微子束,通过地下射向距其1300公里重达7万吨的DUNE探测器。
届时无穷无尽的氩原子将与中微子发生相互作用,从而被科学家们探测到。
LBNF/DUNE主要由美国能源部资助,预计总投入15亿美元,不算夭折的超导超级对撞机(SSC),这是迄今美国高能物理界最昂贵的一笔投资。
07
桑迪飓风刮不走的会议
2012年10月29日,周一,百年难遇的桑迪飓风袭击了美国东海岸。
长岛断电,一片漆黑,犹如世界末日。长岛—芝加哥的航班也被取消了。
布鲁克海文国家实验室的物理学家米林德·迪万(Milind Diwan)与14位科学家被困长岛,无法前往芝加哥郊外的费米实验室参加项目评审会议。
长基线中微子实验(LBNE)项目是LBNF/DUNE的前身,迪万是LBNE项目联合发言人。
飓风袭击之下,迪万等人只能通过手摇发电机给手机充电,全天远程参与评审会发表专业意见。这很不容易,要全力摇动15分钟才能获得一格电量,科学家们干的就是体力活。
2012年10月29日,纽约,被吹倒的树和输电线
他们不能放弃,LBNE项目生死一线,成败在此一举。
受SSC中途下马的影响,美国政府对大型基础物理实验犹豫再三,致使LBNE项目审批过程一波三折。
因为12-15亿美元的高昂预算,2010年美国国家科学委员会打回了实验计划,将其转给美国能源部。随后,物理学家和美国能源部官员进行了讨价还价。
2012年初,传出消息能源部官员打算终止为中微子实验提供经费,因为预算已经捉襟见肘。
针对能源部2013年高能物理学研究预算,当年的美国总统奥巴马大笔一挥削减了600万美元,减至7.57亿美元,跟过去10年相比缩水了15%。LBNE项目费用在能源部的预算中占很大比重。
时任费米实验室主任皮埃尔·奥多纳(Pier Oddone)很无奈,鉴于高能物理学研究经费未来10年不可能增加,对于启功这样一项大规模研究计划,能源部可能无钱可用,他指出:
管理层关注的是先进的制造和能源技术,高能物理学和核物理学研究面临压力。
来自大约75个研究所的450多名科学家参加了LBNE合作,能源部的表态让美国物理学界炸开了锅。2012年1月,40多名著名理论物理学家据理力争,致信能源部科学办公室负责人威廉·布林克曼(William Brinkman),呼吁为这项实验提供经费。
这封请愿信共有3名诺贝尔奖得主签名,其中就包括标准模型奠基人之一斯蒂芬·温伯格(Steven Weinberg),他在1987年推动了超导超级对撞机(SSC)上马。
物理学家们做出了让步,提出了多个廉价的分阶段折中方案,甚至委曲求全要在地面上放置便宜的探测器,能源部勉强通过了第一阶段审批。
2012年10月30日星期二,美国能源部对LBNE项目进行至关重要的第二阶段评审会。
桑迪飓风也未能让评审会延期,科学家的坚持换来了回报。2012年12月,能源部通过了二阶段审批,同意科学家们建立近地表中微子探测器。
尽管相比初始计划大打折扣,迪万依然很高兴,称这是十多年来的一个里程碑。
重重压力下,奥多纳于2012年8月宣布将于2013年7月1日退休,结束了对费米实验室长达8年的领导,专心科学写作与打理私家葡萄园。
奥多纳撂挑子不干,费米实验室董事会只好发起全球猎聘,在物色了9个月人选后,终于锁定了物理学家奈杰尔·洛克耶(Nigel Lockyer)。
洛克耶有两重身份,他是费米实验室的熟面孔,之前在Tevatron对撞机的CDF探测器上研究了22年。同时他也是加拿大粒子与核物理国家实验室TRIUMF负责人,是一位国际友人。
事后证明,费米实验室董事会的眼光很准,推动LBNE变身LBNF/DUNE项目上马,洛克耶的国际身份功不可没。
2015年1月,经过长达3年的博弈,能源部不仅批准了计划,还同意将实验恢复到初始范围,将地表探测器换成昂贵的深地下探测器,经费达到上限15亿美元,于是才有了上文的一幕。
至此,美国资助高能物理的战略路线清晰可见:
1993年美国国会下马耗资20多亿美元的SSC,还专门拨款6.4亿美元把挖好的隧道填掉,够狠。
2011年美欧竞争发现希格斯粒子,战斗正酣之际,美国悍然封存Tevatron,给中微子实验让路。
2015年美国能源部将不多的预算押宝LBNF/DUNE中微子实验。
美国高能物理的战略路线图呼之欲出:
坚决不走对撞机道路,集中力量瞄准中微子开火。
在2011-2015这四年时间,是什么原因让美国态度发生180度翻转,决定投入巨资支持中微子实验?
08
决定美国高能物理命运的会议
2013年7月29日,正是一年最热的时候,700多位高能物理学家不惧酷暑,前往明尼苏达大学双子城分校,参加一场决定美国物理命运的盛会——斯诺马斯(Snowmass)会议。
斯诺马斯小镇座落于科罗拉多州落基山脉,是全球顶级滑雪胜地,一年四季风景美不胜收。从1982年开始,每隔几年, 美国粒子物理学会都在此华山论剑,召开夏季研讨会。
斯诺马斯小镇
上一次斯诺马斯会议召开还是在2005年,之后8年美国粒子物理学会寂寂无声。
2013年会址改在大学校园,原因很简单,随着政府拨款逐年递减,美国粒子物理界囊中羞涩,在学校开会可以节省大笔食宿开支。有些来自费米和阿贡国家实验室的参会人员为了省钱,甚至采用了拼车的出行方式。
之所以还叫斯诺马斯会议,在于研讨会性质、任务以及会议组织者、参会者都与往年无异,这其中恐怕还包括了对美好岁月的怀念。
就算缺钱,也要发扬艰苦奋斗精神,在2013年劳师动众开一场大会,是因为2012年物理学界发生了两件大事,美国粒子物理界面临下一步怎么走,“红旗”还能扛多久的问题。
2013年斯诺马斯会议讨论美国物理学下一步怎么走
一件大事,就是广为人知的欧洲LHC发现了希格斯粒子,另一件大事知道的人就不多了。
2012年3月8日,中国主导的大亚湾国际中微子实验组宣布,测到了最难测,也是最后一个中微子振荡混合角参数 θ13,且远高于理论预期,这意味三种中微子都会彼此振荡变身。
中国知名物理学家李淼在第二天3月9日发文,敏锐地指出这也许是在中国本土首次测量到的基本物理学参数。“我们一点也不过分地说,这是中国对基础物理学最大的贡献。”
主持这个实验的,正是我们的老朋友,中科院高能物理研究所所长王贻芳。
据美国能源部资助的科学杂志《对称》在2012年8月10日报道,大亚湾中微子实验推动了LBNE至关重要的二阶段审批。如果测得θ13值很小,那么LBNE将无法完成它的主要实验目的——全面观测三种中微子的振荡模式。
LBNE还要感谢另一位华人,时任美国能源部部长朱棣文,他不仅是首个诺奖部长,也是首位亚裔人士部长。朱棣文研究方向在凝聚态领域,他用激光冷却俘获原子获得1996年诺贝尔物理学奖。
这里醋醋忍不住要插一句,2012年3月《三联生活周刊》针对此事发布重磅报道《“捕获”中微子》,梳理了发现中微子的前世今生,却只字不提王淦昌,这是很可悲的。
2012年的两件物理学大事,促成美国物理学家在2013年召开斯诺马斯会议,划清分歧,统一思想,确定美国粒子物理学的未来方向。
欧洲人出大王压死,中国人甩出三张同花顺,美国人怎么跟?
09
“上帝粒子“与”幽灵粒子“的对决
这是一场“上帝粒子”与“幽灵粒子”的对决。
经过9天的激烈讨论,与会人士一致认为,对希格斯粒子、中微子以及暗物质都需做更精确的测量。它们是漂浮在新物理大海的一个个岛屿,看似遥不可及,但可能彼此存在很深的联系,甚至是一个大陆露出水面的不同山峰。
但会议同时也指出,在有限的经费前提下,美国人不可能三个方向同时发力。
到底是秉承SSC(超导超级对撞机)的遗志,优先发展环形周长100公里的VLHC(超大强子对撞机),还是长基线中微子实验LBNE,成为争论的焦点。
普林斯顿理论物理学家尼玛·阿卡尼-罕默德(Nima Arkani-Hamed)是VLHC计划的支持者之一。加州大学圣塔巴巴拉分校理论物理学家戴维·格罗斯(David Gross)则猛烈抨击LBNE,他认为中微子物理学研究领域过于狭窄,不足以支持美国国家计划。“即使我们测量了所有的参数,该计划终会走向尽头“。
这两位仁兄的名字是不是有些眼熟,没错,他们就是醋醋上篇文章《杨振宁的最后一战》提到的两位超弦教中坚,尼玛是后起新秀,格罗斯是教主导师。
**争论的结果是LBNE胜出,VLHC搁置。**这不奇怪,自1993年美国国会下马SSC后,对撞机在美国就不待见,2011年美国关闭费米实验室Tevatron对撞机,美国本土再无大型对撞机运行,VLHC想复活SSC,不亚于复活木乃伊的难度。
作为美国物理界的少数派,尼玛与格罗斯碰壁之后转向中国,在2014-2016年联合一帮超弦教难兄难弟鼓吹CEPC-SppC,相当于把VLHC拆成两半凑一块。
2016年,清华大学高能物理研究中心和工程物理系教授何红建、清华大学数学科学中心主任丘成桐两人,采访了一圈世界顶级物理学家,包括霍金、格拉肖、温伯格等人,以获得他们支持在中国建超大对撞机的言论。
这些物理学家都是场外摇旗呐喊,属于啦啦队的性质。而超弦教一行,却是几次专程赶到中国四处游说,尼玛还于2013年底担任中科院高能所前沿研究中心主任,联络各种活动,那是下场打球的姚明。
霍金、格拉肖、温伯格等人的学术成就已有定论,超大对撞机对他们而言是锦上添花,如果撞出新东西,皆大欢喜,撞不出来也没啥损失。需要成百上千亿资金?反正又不是我掏钱,who cares?(谁在乎?)
但是威腾、格罗斯与尼玛等超弦教兄弟,研究半生的理论还悬在空中,对撞机对他们而言是雪中送炭,能不急吗?
10
对撞机与超弦教的裙带关系
醋醋有必要科普一下,好叫大家弄清楚超弦教与对撞机的裙带关系。
在标准模型中,基本粒子的质量由希格斯粒子赋予,后者应是一个大质量粒子,但是LHC测出其质量远远小于理论值。
这就好比你在健身房远远看到有人在举200公斤重的杠铃,你以为是施瓦辛格,走近一看却是林志玲,你会不会傻眼。
有两个解释,一是在标准模型中,非常精细地调节参数,让两个巨大的数字几乎(但又不完全)相互抵消,使得希格斯粒子拥有较小的质量。
但这种参数调节很不自然,就好比林志玲说她练了九阴真经,内力深厚,所以能举杠铃,你信吗?
另一种解释就是大名鼎鼎的超对称理论,每个基本粒子都有个超对称伙伴粒子,林志玲的超对称伙伴是施瓦辛格,他扶着林志玲“嘿哧嘿哧”举杠铃,这就很自然了。
用物理学行话讲,就是超对称粒子保护了希格斯粒子的质量,避免其质量平方发散,令其回归自然性。
什么,你看不见施瓦辛格?那是当然啦,超对称粒子还没撞出来呢。
超对称不光能保证希格斯粒子的自然性,还是暗物质的有力候选者。更重要的是,它迈向大统一理论,提供了在高能标处统一三种相互作用力(电磁,弱,强相互作用)耦合强度的可能性。证明超对称,那物理学真是中大奖了。
事实上,基于超对称理论,希格斯粒子质量(m)要很小。据爱因斯坦质能方程E=mc^2换算,小于120GeV/c^2,将是对超对称的有力支持。相反,如果大于130GeV/c^2,则可以给超对称判死刑。
老天爷搞了个恶作剧,LHC发现的希格斯粒子,**恰恰在125GeV/c^2附近,超对称刚好半死不活。**由于LHC是强子对撞,本底干扰太多,加上希格斯粒子质量不确定性,该数值不够精准。
CEPC精细测量希格斯粒子的一大目的,就是检验超对称理论的真伪,而超对称又构成了超弦的“超”。如果检验发现超对称理论还没死透,那么就再花千亿升级成SppC,直接撞出来超对称粒子也就有理由了,所以这个项目从来都是CEPC-SppC的连接体。
至此,对撞机与超弦教的七大姑八大姨关系浮出水面。
**CEPC对于超弦教的意义就是:**活要活个通透,死要死个明白。
醋醋看到不少所谓的物理学专业人士批判《杨振宁的最后一战》一文,把板子打在“CEPC与超对称超弦无关”上,这不是揣着明白装糊涂,就是把物理学知识还给老师了。
从人性的角度考量其实很简单,超弦教多次组团来中国鼓吹超大对撞机项目,如果与这个项目没有一毛钱关系,难道他们都是像白求恩一样好的国际友人?
然而,杨振宁等科学家给了超弦教当头一击,CEPC-SppC项目在中国陷入人民战争的汪洋大海。
11
P5报告一锤定音
一边是超弦教四处碰壁,另一边美国粒子物理界北上还是南下,总得划出个道道,不能原地踏步走。
斯诺马斯会议大体吵出了方向,要形成历史决议一锤定音,还需制定一份P5报告。
P5的英文全称Particle Physics Project Prioritization Panels,即“粒子物理学项目优先级小组”,由美国能源部和美国国家科学基金会在2004年联合组建。
P5小组有25个成员,来自物理界各个领域大牛,他们受命制定未来十年美国粒子物理的详细路线图,向联邦高能物理咨询24人小组汇报。
2008年5月,P5小组发布了第一份报告,给出三个发展方向,暗合2013年斯诺马斯会议的讨论结果。
**1、能量前沿:**优先发展高能粒子对撞机,撞出希格斯粒子以及其他理论上预言的新粒子,如超对称粒子,实现基本力的大统一理论。
**2、强度前沿:**优先发展高强度质子束产生足够强度的中微子,揭示中微子性质并观察振荡过程,获得超越标准模型之外的新物理学。
**3、宇宙前沿:**优先使用基于地下的探测器和太空的望远镜,揭示暗物质和暗能量的本质,并接收宇宙射线高能粒子探测新物理现象。
能量前沿对应希格斯粒子,强度前沿对应中微子,宇宙前沿对应暗物质暗能量兼顾中微子,宇宙射线含有大量的高能中微子。
三个方向,中微子独中两元。
2008年的P5报告给中微子留了一手,让政府拨款保护霍姆斯特克矿坑,将地下水抽出,为后来的LBNF/DUNE中微子实验奠定了基础。
至于能量前沿的对撞机项目,P5报告只是说这个如何如何重要,却没有啥实质性的项目建议。
这是可以理解的,上一届2005年斯诺马斯会议达成共识,优先建造国际直线对撞机(ILC)。就在P5报告发布的前一年2007年,美国人变卦了,把项目推给日本。碍于美国的面子,后者只得笑纳,但日本人也不傻啊,要建可以,谁出另一半钱我就建,由于大家都不傻,ILC也就拖成了贾跃亭下周回国。
可见美国人真是不来电对撞机,不管它是弯的还是直的。
本来按计划,第二份P5报告要在下一个十年2018年发布,因为美国粒子物理界走到了十字路口,就提前至2014年5月发布。
这份P5报告,基于斯诺马斯会议的讨论结果,在2013年11、12月召开三场专题会议,针对三个前沿方向展开讨论,于2014年3月1日发布有关建议实验重点的初步报告,最终报告于2014年5月1日发布,5月22日联邦高能物理咨询24人小组投票通过了该报告。
报告名为《全球背景下的美国粒子物理战略计划》,就一个中心意思——LBNE中微子实验是美国粒子物理学的头等大事,这是自寻找希格斯粒子以来最重要的物理实验。
有趣的是,国际物理界看到美国来真的了,纷纷表示要加入一起干,英国、印度、意大利都抛出了橄榄枝,前提是要玩就玩大的,近地表中微子探测器不够劲,要建在深层地下,越深越好,可以有效屏蔽宇宙射线干扰,方便检测来自宇宙的中微子与地球本身产生的中微子。
美国人很鸡贼,本来承诺由能源部资助10亿美元,剩下5亿美元众筹,一看大家很热情,**反而全出了15亿美元,**当然也加强了对实验的掌控权。大亚湾中微子实验有美国深度参与,LBNE中微子实验截至目前,还没看到有中国加入。
2015年1月30日,LBNE组织正式解散,**由P5推荐的新合作组织将实验名字改成了LBNF/DUNE,**意思就是长基线中微子设施-深地下中微子实验,兼具了强度前沿与宇宙前沿。
看到这里,可能你会疑惑,中微子不都发现半个多世纪了吗,为啥世界各国还在不厌其烦反复折腾它?
12
超级赛亚人变身!
让我们再次回到曾经挖出黄金的霍姆斯特克矿山,这里是中微子“神奇之旅”的起点,也有可能是它的……终点。
太阳是一个天然的核聚变反应堆,释放出大量中微子。1968年,雷蒙德·戴维斯(Raymond Davis)在1500米深矿井中埋了一个615吨氯乙烯溶液的大容器,以捕获来自太阳的中微子。
这个戴维斯,就是上面提到那一位,他将王淦昌的间接检测中微子实验做到了最好,这哥们几十年如一日,跟中微子卯上了,中微子决定give him color see see(给他点颜色瞧瞧)。
让他困惑的是,每次捕到的中微子都只是标准太阳模型理论值的1/3,戴维斯百思不得其解,整日茶饭不思,为中微子消得人憔悴。
这个中微子失踪之谜持续了30年,直到1998年日本超级神冈探测器首次发现了中微子振荡的确切证据,才给出了一个合理的解释:
有2/3的中微子在飞行过程中振荡变身,躲过了戴维斯的探测。
就如超级赛亚人有三阶一样,中微子也有三代:第一代电子中微子、第二代μ子中微子、第三代τ子中微子。
事实上,标准模型中,电子、夸克等所有物质基本粒子都有三代,如μ子是第二代电子,τ子是第三代电子,一代比一代重。为什么只有三代,这是一个谜。
超级赛亚人可以在三阶中任意切换,中微子也能在三代中振荡变身:基于物质效应,大约2/3的电子中微子在太阳内部飞行的过程中振荡变身,转换成了μ子中微子和τ子中微子,戴维斯的探测器只能观测电子中微子,于是产生了失踪之谜。
1984年,由加州大学华人物理学家陈华森提出实验构想,通过重水可以将三代中微子一网打尽。
由于1987年陈华森不幸因白血病去世,加拿大女王大学教授亚瑟·麦克唐纳(Arthur B. McDonald)践行其遗愿,在2001和2002年率领SNO合作组火速出动,将所有中微子全部捉拿归案,证明捕获到的中微子与理论值保持一致,太阳中微子失踪案终于告破。
科学家如此关注中微子振荡,在于这背后有一个天大的秘密,**振荡即意味着中微子有质量,**哪怕极小,也与标准模型预言的0质量有天壤之别。
标准模型英文简写SM,顾名思义,这个模型特别虐人,物理学家明知SM有大问题,没有包括引力,不能解释暗物质暗能量,但就是深陷其中不能自拔,不管怎么做实验,SM预言的各种物理现象都与理论吻合得很好。
**《杨振宁的最后一战》**中,标准模型相当于物理学家玩密室逃脱,预言的61个粒子都找到了,就是没找到钥匙。直到中微子振荡表明中微子有质量,才将密室的大门打开一道裂纹。
据标准模型,基本粒子的质量来源是希格斯粒子,中微子不与希格斯场相互作用,所以是0质量,如今发现中微子有质量,则说明还有一个神秘的质量来源。
中微子振荡,是当前唯一超越标准模型的新物理发现。
但这还不是中微子最大的秘密。
(未完待续)